If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=750
We move all terms to the left:
3x^2-(750)=0
a = 3; b = 0; c = -750;
Δ = b2-4ac
Δ = 02-4·3·(-750)
Δ = 9000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9000}=\sqrt{900*10}=\sqrt{900}*\sqrt{10}=30\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{10}}{2*3}=\frac{0-30\sqrt{10}}{6} =-\frac{30\sqrt{10}}{6} =-5\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{10}}{2*3}=\frac{0+30\sqrt{10}}{6} =\frac{30\sqrt{10}}{6} =5\sqrt{10} $
| 58+90+4h=180 | | 5-4x=8x-19 | | 17푛=51n | | 8k−7=7k | | -5+6y=31 | | 4x+1=−3x+15 | | n−1.6=3.4 | | 9x-18=7x+9 | | 7x+5-3x=23 | | 48=3x+7x+16 | | 4x+4x+(x+20)+(x+20)=180 | | r+15/7=2 | | g+1.9=5.5 | | 4.5=5r | | Vx3=36 | | m+20+100= | | 12n=12n | | (x-8)^2=-45 | | 58+4h=180 | | (Y+5)=(3y-9) | | 5x+31=8x-14 | | 4y+2y-1=29 | | 8v-7=-103 | | 3(x+1)+x+4=31 | | 8x-12=(-5x)+27 | | -18=-3(x+5) | | −3+2x+5=5x | | -1+x=35 | | 8n+17=9n+8 | | 17−3(2x−7)=7x−3(2x−1) | | 3(x-8)-4x=4 | | x+-4=180 |